Effect of Deposition Temperature on Self-Catalyzed ZnO Nanorods via Chemical Vapour Deposition Method
نویسندگان
چکیده
منابع مشابه
Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition
Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly depen...
متن کاملGrowth of ZnO Nanorods on Stainless Steel Wire Using Chemical Vapour Deposition and Their Photocatalytic Activity
The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition...
متن کاملEffect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate
ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...
متن کاملLow-temperature plasma enhanced chemical vapour deposition of carbon nanotubes
Vertically aligned carbon nanotubes were selectively grown at temperatures as low as 120 8C by plasma enhanced chemical vapour deposition. We investigated the effects of acetylene, ethylene and methane as carbon source gases together with ammonia as an etchant and nickel as catalyst material. The diluted acetylene plasma gave the highest nanotube growth rate and showed the most intense C Swan b...
متن کاملGold catalytic Growth of Germanium Nanowires by chemical vapour deposition method
Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2018
ISSN: 2502-4760,2502-4752
DOI: 10.11591/ijeecs.v11.i1.pp209-214